Backend, An RDBMS Backed Object
Development Framework

K. Raghu Prasad
Prangya Technologies Pvt. Ltd.

15th August 2002
Revised 29th March 2003

Contents

1 Introduction

2 License

3 The Architecture

4 Support Modules
4.1 prangya.excgemneric e i i i e e
4.2 prangya.dburlparse o o
4.3 prangya.randutils o e
4.4 prangya.utils e e
45 backend

5 Classes
5.1 DBCORNECHION v i i i e et e e et e e e e
51.1 Module
51.2 Members e
51.3 Methods
5.2 BackDB e e e
521 Module
522 Members e
523 Methods
53 DBMap e e e
531 Module
532 Members e e
533 Methods
5.4 BackEnd e e e
54.1 Module
542 Members e
543 Methods

6 Configuration File Format

CONTENTS

7 Using backend Framework

7.1 Development Constraints
7.2 SampleProgram
7.2.1 Database
7.2.2 ConfigurationFile
7.2.3 Code for class Client . . .

7.2.4 Running the sample code

8 Conclusion

ii

35
35
37
37
37
38
40

42

1 INTRODUCTION 1

1 Introduction

BackEnd is an RDBMS backed object development framework written en-
tirely in Python. The main goal of development of this framework is to free the
developer from the task of writing code for database connection and querying
while still using it effectively for storage and retrieval of the attributes of the
objects. It provides ways to connect to the database seamlessly and manage
database connection-pools. While writing applications, the developer needs
to concentrate only on the business logic of the objects being created and
used.

If use of the database is more complicated than just storage and retrieval
of attribute values, backend framework provides easy access to concerned
databases from within the object. Developer can obtain a connection object
from any member method using which he/she can talk to the database using
SQL.

This framework is tested with MySQL and PostgreSQL databases. It should
work! with other RDBMS’ for which Python based client modules are avail-
able. The client module must confirm to Database API version 2 (DB SIG 2).

2 License

This software is provided under the terms of GNU Library General Public Li-
cense (version 2.0). See the accompanying file COPYING for further details.

3 The Architecture

The backend framework uses an object oriented design for achieving its goals.
Figure 1 shows the composition of its classes. There are four major classes
involved; namely DBMap, BackDB, DBConnection and BackEnd.

Class DBMap handles interpretation of configuration file. Present imple-
mentation takes configuration from a disk based file. But by extending this
class one can obtain it from a remote host over LAN or WAN. As shown in fig-
ure 1, all interfaces of DBMap are well contained in BackEnd and so they are
hidden from the user.

Class BackDB handles database connections and connection-pool man-
agement. Class BackEnd maintains one instance of this class per database
being used. Initialization and maintenance of multiple connections for re-
spective databases are done transparently to the user of this framework.

Class DBConnection provides a thin wrapper over standard database con-
nection object. Instances of this class are created on request by instances of
class BackDB.

These classes along with additional utility modules provide basic building
blocks for backend framework.

1As per DB SIG 2 there is no standard order of appearance defined for the arguments for
method connect(). To overcome certain generalization problems, a hack(xforms.dbconnect()) is
implemented which might require changes depending on the database module being used.

4 SUPPORT MODULES 2

l
[
Il
Il

l

(%]
@
o
®
)
1

Interfaces

l
l
l
l
n

DBConnecti o

|
[
[
I
[
[
I 8
BackDB I K
| <
l] - I
[l |
l | [
[l |
8 | | [
g [l |
= | l I
5 ! 1
E | | [
- [l |
l | [
[l |
DBMap l | [
I (-
BackEnd

Figure 1: Composition of classes in backend framework

4 Support Modules

BackEnd framework uses various standard Python modules. It also uses
some special python modules available in prangya extension series. Read
standard Python documentation for details of standard modules. Besides
them, following additional modules are used in backend framework.

4.1 prangya.excgeneric

This module is part of prangya extension series. It contains a set of generic
exception classes required in normal programming practice. Refer respective
documentation for further details.

4.2 prangya.dburlparse

This module is part of prangya extension series. It contains function to parse
and tokenize a database URL (called DBURL) used for storing all the details
needed for accessing an RDBMS. Refer respective documentation for further
details.

4.3 prangya.randutils

This module is part of prangya extension series. It contains some helper
functions for handling pseudo random number related requirements. Refer

4 SUPPORT MODULES 3

respective documentation for further details.

4.4 prangya.utils

This module is part of prangya extension series. It contains some utility func-
tions. Refer respective documentation for further details.

4.5 backend

This module contains a collection of classes to abstract the database back-
end related activities. It provides interfaces to seamlessly connect to multiple
databases, database connection-pool management and object creation and
storage from data retrieved from back-end tables efc. Here follows the list of
the classes defined in this modules along with brief descriptions.

1. DBConnection: It is a wrapper class for database connection object
supplied by underlying database module. It defines all the interfaces
specified in python database API version 2(DB SIG 2). The tasks in-
volved in these interfaces are handled by underlying database module.
The only exception being the implementation of method DBConnec-
tion.close(). Instead of closing the database connection, it returns the
actual Connection object back to the db-pool held by class BackDB de-
scribed below.

2. BackDB: This class manages a pool of database connection objects
generated from the underlying database connection module. It pro-
vides a framework to the application to obtain a database connection
and reserve it for transaction purposes. It is done with the help of iden-
tification tags supplied while requesting a database connection. These
tags must be unique across an application for unique connection ob-
jects. The maximum number of database connection permissible can
be set through the interface provided by this class. Generally one in-
stance of this class per database is needed. This class is thread-safe.

3. DBMap: This class manages the constraints involved in mapping at-
tributes of various classes to corresponding backend database entities.
A configuration file with a structure similar to Windows’ .ini files are
used to represent these mappings. It provides interfaces for reading
such configuration file and writing existing live configuration back to
a file on disk. This class is not thread safe. In threaded applications
you should avoid changing attributes of underlying DBMap object after
initializing it through a configuration file.

4. BackEnd: It is the main engine of backend framework. It handles cre-
ation of objects from an RDBMS backend. It also updates the same
backend, whenever changes are made to the attributes of the objects
created by it. To implement backend framework, normally the user
needs to study and understand the interfaces of class BackEnd only.

All user defined classes must inherit from this class to use the backend
framework. No writes should be made directly on any tables used in any

5 CLASSES 4

backend compliant class. In short it means, you must not write directly
on any table which is used in the configuration (DBMap object) as this
would cause data inconsistency between the database and the objects
currently under use. Though class BackEnd itself is thread-safe, you
must ensure thread-safety of all classes inherited from it. It can be done
by implementing proper object locking mechanisms? on them.

5 Classes

The details of the classes involved in BackEndframework is described in this
section. The details include module names, class and instance attributes,
methods of the class and their return values along with possible exceptions.
All attributes and methods with prefix of double underscores (__) are private
for all types of accesses. Attributes with prefix of single underscore (.) are
read-only attributes by convention and hence must not be changed. Attribute
id of the classes should not be changed either.

5.1 DBConnection
5.1.1 Module

Its a member of module backend.

5.1.2 Members

Name Var. Type DataType Description

id Instance String The identification string of the
instance.

_paramstyle Instance String Specifies the paramstyle at-

tribute of underlying db mod-
ule. Its value should be one
of the following (as defined in
module prangya.utils).:
DB_FMT_QMARK
DB_FMT_NUMERIC
DB_FMT_NAMED
DB_FMT_FORMAT
DB_FMT_PYFORMAT

_closed Instance Integer The flag indicating object’s clo-
sure.
__dbCon Instance Object The database connection ob-

ject obtained from the underly-
ing database module.
__lock Instance Obiject The re-entrant lock object.

2Refer documentation of method Backend.setLock() for setting locks on user defined objects
inherited from class BackEnd.

5 CLASSES 5

5.1.3 Methods

1. _init__(): Its the constructor for this class. The two parameters supplied
to it are the identification string of the instance and a database connec-
tion object. The later is optional.

Parameter DataType Default Description

id String The identification string of this
object.
dbCon Mixed 0 The database connection ob-

ject supplied by underlying
database module or 0.

Returns: Nothing.
Raises:
ParamException: Invalid parameters supplied.
2. isAlive(): Method to identify whether the object is alive or closed for
database transactions. It does not take any parameter.
Parameters: Nothing

Returns: True(1) if object is usable for database related activities, else
false(0).

Raises: Nothing.

3. setDBCon(): Method to associate a database connection object with the
instance of this class. If a connection object is not supplied in the con-
structor, it can be supplied through this function. If a connection object
is already supplied, this function call fails.

Parameter DataType Default Description

dbCon Obiject The database connection ob-
ject obtained from the underly-
ing database module.

Returns: Nothing.

Raises:

ClosedException: The database connection object is closed.
ParamException: The parameter dbCon is not an object.
ExistsException: A database connection object is already associated with
this instance.

4. setCallbackOnClose(): Method to associate a callback function to this
instance. The assigned function will be called when this instance is

closed.

Parameter DataType Default Description

method Function The method which is to be
called when this object is
closed.

Returns: Nothing.

Raises:
ClosedException: The database connection object is closed.

5 CLASSES 6

ParamException: The parameter supplied is not a method or function
object.

5. commit(): Wrapper method to commit transactions over a database
connection. It calls the commit() method of underlying database con-
nection object.

Parameters: Nothing.
Returns: Nothing.
Raises:

ClosedException: The database connection object is closed.
CommitException: Failure in committing pending transactions.

6. rollback(): Wrapper method to rollback to the start of any pending trans-
actions over a database connection. It calls the rollback() method of
underlying database connection object.

Parameters: Nothing.
Returns: Nothing.
Raises:

ClosedException: The database connection object is closed.
Exception: Failure in rollback operation.

7. cursor(): Wrapper method to create a cursor object from the underlying
database connection.

Parameters: Nothing.
Returns: An instance of the Cursor object.

Raises:
ClosedException: The database connection object is closed.
CursorException: Cursor creation failure.

8. close(): Method to return the actual connection object associated with
this instance to the creator, viz. to the instance of BackDB from where
this object was initialized. It is done with the help of a callback func-
tion which is registered to this instance of DBConnection. It is invoked
from within this method with id of the object as parameter. It effec-
tively takes away the database connection object from this instance of
DBConnection. The actual connection object is in fact returned back to
the pool of free db connections maintained by the creator viz. instance
of BackDB. If the attribute holding the callback method is not found, no
error is raised and the instance of DBConnection class is silently flagged
off as closed.

Parameters: Nothing.
Returns: Nothing.
Raises: Nothing.

5.2 BackDB
5.2.1 Module

Its a member of module backend.

5 CLASSES

5.2.2 Members

Name

Var. Type

Data Type

Description

id

__freeDBQ

_-dbMaps

__dbConObjs

__initSQLs

__conMax

__conSema

__lock

__dbScheme

__dbDriver

__dbUser

__dbPassword

__dbHost

__dbPort

__dbSock

_dbModule

Instance

Instance

Instance

Instance

Instance

Instance

Instance

Instance

Instance
Instance
Instance
Instance

Instance

Instance

Instance

Instance

String

Object

Dictionary

Dictionary

List

Integer

Object

Object

String
String
String
String
String

String

String

Module

The identification string of the
database being represented by
the instance of this class.

A queue(instance of Queue) of
unlimited size to hold the free
database connections.

A dictionary to map
connection-id to database
connection objects currently
under usage.

A dictionary to map
connection-id to list of DBCon-
nection objects created by fac-
tory method BackDB.connect().
List of SQL statements to be
executed as soon as a new
database connection is made.
Maximum number of database
connections permitted for this
database.

A threading.Semaphore object
used to control the creation of
number of database connec-
tions.

A threading.RLock object used
for various thread-safe opera-
tions.

Access-scheme for
database.

Name of the database driver-
module.

Database user-name.

Password for the database user.
Name or IP of the host where
database server is running.

The port number on which the
database server process listens
for TCP connections.

The full path to the disk based
socket file® used to communi-
cate with the database server
process.

The loaded python module
specified by __dbDriver.

this

5 CLASSES 8

5.2.3 Methods

1. _init_(): Its the constructor for class BackDB. It takes two compulsory
parameters, first being dbld (database identification string) and the sec-
ond one dbURL(DBURL string). It does groundwork for managing pools
of database-handles and other relevant functionalities.

Parameter DataType Default Description

abld String The database identification
string for the database repre-
sented by the instance of this
class.

dbURL String The DBURL string containing
information about the underly-
ing database and the ways to
access it.

Returns: Nothing.

Raises:

ParamException: Invalid parameters supplied.
ModuleException: Failure in loading of database driver module.
ConnectionException: Failure in database connection.

2. connect(): A factory method to return an instance of class DBConnec-
tion containing a database connection object. The id supplied, known
as connection-identifier is used to identify and track the connection ob-
ject. The various steps required for using this framework are as follows:

(a) Create BackDB instance and set various tuning parameters.

(b) Call to connect() with an id and obtain a DBConnection object.
(c) Use that object for various database related operations(SQL).
(d) Close that DBConnection object by calling method close() of it.
(e) Repeat step 2b to obtain a new DBConnection object.

(f) Repeat steps 2c and 2d in that order.

In the case described above there is no guaranty that the underlying
database connection object wrapped up in object DBConnection on
step 2e is the same as the one obtained in step 2b. In short, it means
that you can't possess exclusive rights on a database connection for an
extended period of time in the scheme described above.

But this method can also be used to reserve a particular database con-
nection exclusively for a series of operations in multiple batches. For
this, pass on the same id each time while calling the method connect().
Besides that, do not call the method close() on any of the DBConnec-
tion object till you want that connection to be exclusively available to
you. The steps required are as follows:

(a) Create BackDB instance and set various tuning parameters.
(b) Call to connect() with an id and obtain a DBConnection object.
(c) Use that object for various database related operations(SQL).

5 CLASSES 9

(d) Call connect() with the same id and receive another instance of
DBConnection wrapping the same old database connection object
within it.

(e) Use this object for various database related operations(SQL).

(f) Repeat steps 2d and 2e as many times as you want.

(g) Call method close() on any one of the DBConnection object ob-
tained in above steps(2b, 2d or subsequent ones).

The calling framework described above is helpful to use transaction fa-
cility of underlying database. You can carry out commits and rollbacks
over an extended period of time in multiple function calls without wor-
rying about the usage of the same connection by other threads in the
same application.

Remember that calling method close() on any of the DBConnection ob-
ject with certain id will close all the objects created by factory method
connect() with that id as parameter.

Parameter DataType Default Description
id String The connection identification
string.

Returns: An instance of DBConnection (see section 5.1).

Raises:

ParamException: Parameter id is not of string type.
ConnectionException: Failure in database connection.
LimitException: Max-limit of database connection reached.

3. __connect(): A private method to open a connection to the database
Server.

Parameters: Nothing.
Returns: Nothing.

Raises:
ConnectionException: Failure in database connection.
LimitException: Max-limit of database connection reached.

4. disconnect(): Method to release a database connection object from the
exclusive possession of some entity like DBConnection object. It should
not be called directly as far as possible. It is normally registered as an
on-close callback function to the instance of class DBConnection. It
calls it when its close() method is invoked. Once this method is invoked
with a valid id, any DBConnection object with that id, created through
the factory method connect() of BackDB instance, looses its existence.
None of them could be used further for any database related activity.
Direct call to this method from a program is only advisable under some
special cases where the normal usage may turn out to be infeasible.

Parameter DataType Default Description
id String The connection identification
string.

Returns: Nothing.

5 CLASSES 10

Raises:
ParamException: No matching DBConnection object found for the sup-
plied connection-identification string.

5. __disconnect(): Private method to pop one free database connection
and close it.

Parameters: Nothing.
Returns: Nothing.

Raises:
Exception: Disconnection-operation fails.
LimitException: All database connections are in use.

6. setInitSQLs(): Method to register a list of SQL statements with the in-
stance of this class which are to be executed whenever a new database
connection is made.

Parameter DataType Default Description
sqlList List The list of SQL statements.

Returns: Nothing.

Raises:
ParamException: Supplied parameter is not a list object.

7. getInitSQLs(): Method to retrieve the list of initialization statements (in
SQL) currently used by this object.

Parameters: Nothing.

Returns: A list containing SQL statements used by the object for initial-
ization of database connection. If none is available, then an empty list
is returned.

Raises: Nothing.

8. setConMax(): Method to set the limit on maximum number of connec-
tions to the underlying database. If the new limit is greater than the ex-
isting one, it will be set successfully and the new limit is returned to the
caller. If the new limit is less than the existing one, this method may or
may not set it successfully depending on the current usage of database
connections. In such cases the limit is reduced as much as possible till
the requested value is reached and the actual value set by this method
is returned back to the caller.

Parameter DataType Default Description

maxLimit Integer The requested maximum limit
on number of database connec-
tions.

Returns: The actual limit set successfully by this method.

Raises:
ParamException: The parameter maxLimit is either a non-integer or its
Zero or negative.

5 CLASSES 11

9. getConMax(): Method to retrieve current limit on number of database
connections.

Parameters: Nothing.
Returns: The present limit on number of database connections.

Raises: Nothing.

10. closeFree(): Method to close down the free database connections. The
number of connections to be closed is supplied as an argument to this
method. If no parameter or 0 is given, all free database connections are
closed down. It returns the number of successful closure of connec-
tions. It is not necessary that the value returned would match with the
value requested.

Parameter DataType Default Description

num Integer 0 Number of free (unused)
database connections to be
closed. The default is all
unused connections.

Returns: The number of successful closure of connections due to this
function call.

Raises:
ParamException: The parameter num is not a positive integer.

11. getDBDriverName(): Method to retrieve the name of the python database
client module being used for the underlying connection object.
Parameters: Nothing.

Returns: A string containing the name of the database driver module.
Raises: Nothing.

12. getInfo(): Method to retrieve status of internal data structures of this

instance. Generally this method is used for debugging only. It should

never be used to retrieve data for any other purpose as there is no thread-
locks in place during data-retrieval.

Parameters: Nothing.

Returns: String-representation of a dictionary containing name-value
pairs of public and private data of this class. Remember to not to use
this data for any purpose other than debugging this class. That too
should be done in a single threaded environment.

Raises: Nothing.

5.3 DBMap
5.3.1 Module

This class is defined in module backend.

5 CLASSES

5.3.2 Members

12

Name Var. Type DataType Description

configFile Instance String Configuration file path.

__catcMaps Instance Dictionary Storage for class-attribute-
tablecolumn mappings.

__uncTabCols Instance Dictionary Storage for class-table-
column(of un-comparable
datatype) maps.

_ctcaMaps Instance Dictionary Storage for class-tablecolumn-
attribute mappings.

_ctcaRels Instance Dictionary Storage for class-table-column-
attribute relationships.

__tableRels Instance Dictionary Storage for table-to-table rela-
tionship mappings.

_classDBMaps Instance Dictionary Storage for class-dbname map-
pings.

__dbURLs Instance Dictionary Storage for database-DBURL
mappings.

_-dbCons Instance Dictionary Storage for database to number
of dbconnection mappings.

__idInsertVals Instance Dictionary Class name to id-insertion
value mappings.

__initSQLs Instance Dictionary dbld to initialization SQL maps.

__lastldSQLs Instance Dictionary dbld to id-retrieval SQL maps.

__delTables Instance Dictionary Class name to deletion table
maps.

_nolnsTables Instance Dictionary Mapping of class names to table
list for no insertion.

_noUpdTables Instance Dictionary Mapping of class names to table

list for no update.

5.3.3 Methods

1. _init__(): Constructor to initialize class to database mappings either

from a configuration file or with empty parameters. Its not necessary to
have a configuration file in advance. You can create an empty DBMap
object and then set respective values into it. Then the whole configura-
tion can be written to the file whose name and path is supplied in the
constructor.

Parameter DataType Default Description
configFile String Full path to the configuration
file.

Returns: Nothing.

Raises: ParamException: The parameter configFile is not of string type
or required permissions not available on that file or the directory con-
taining it.

. read(): Method to populate the internal data structures of this class with
the data obtained from the configuration file. If configuration file is not

5 CLASSES 13

supplied as a parameter, the one supplied during the construction of
the object (self.configFile) is used for this purpose.

Parameter DataType Default Description
confFile String None Full path to the configuration
file.

Returns: Nothing.

Raises:

ParamException: The parameter confFile is not of string type.
FileException: Error in accessing configuration file.

ConfigException: Inconsistency or error in configuration file.
ConfigParser.DuplicateSectionError: Duplicate sections found in the con-
figuration file.

ConfigParser.MissingSectionHeaderError: Config file contains no section
headers.

ConfigParser.ParsingError: Failure in configuration file parsing.

3. write(): Method to write current configuration into a disk file. If the full
file path is not provided as a parameter, the one supplied during the
construction of the object (self.configFile) is used instead.

Parameter DataType Default Description

confFile String None The full path of the file into
which the configuration is to be
written.

Returns: Nothing.

Raises:
ParamException: The parameter confFile is not of string type.
IOError: Failure in opening/writing configuration file.

4. getUncomparables(): Method to retrieve the list of columns having un-
comparable data types like float or double.

Parameter DataType Default Description

className String The name of the class for which
the data is being retrieved.
tableName String None The name of the table associ-

ated with given class for which
the un-comparable columns
are being retrieved.

Returns: Alist or dictionary containing details of un-comparable columns
of tables involved for given class. If table name is provided, then a list
of un-comparable columns in that table are returned. Else a dictionary
with table-name as key and a list of such columns as value is returned.

Raises:

ParamException: The parameter className or tableName is not of string
type.

NotExistsException: The parameter className is not found in the con-
figuration.

5 CLASSES 14

5. setUncomparables(): Method to set or remove un-comparable column
types for a class and table.

Parameter DataType Default Description

className String Name of the class which must
not be None or empty string.
tableName String None Name of the table which can be

None or empty string if all exist-
ing un-comparable column de-
tails for given class are to be
removed from existing configu-
ration. If it is empty or None
then parameter columnlList is
not used or tested.

columnList List None A list containing the columns
of given table. If it is None
or empty, then all existing (un-
comparable) columns for the
given table are removed from
the configuration. Else sup-
plied ones are set after remov-
ing existing columns for the
given table.

Returns: Nothing.

Raises:

ParamException: The parameters className or tableName are not string
objects or columnlList is not list object.

NotExistsException: The parameter className is not found in the con-
figuration.

6. columnlsUncomparable(): Method to test whether supplied column of
given table associated with given class is un-comparable or not.

Parameter DataType Default Description

className String Name of the class which must
not be None or empty string.

tableName String Name of the table. Invalid ta-

ble name does not raise any ex-
ception. In such case the return
value is 0.

columnName String The name of the column which
is to be tested. Invalid column
name does not raise any excep-
tion. In such case the return
value is 0.

Returns: 1 if column is un-comparable. In all the other cases including
invalid table or column names, 0.

Raises:
ParamException: Any of the parameters className, tableName or column-
Name are either empty or not string objects.

5 CLASSES 15

NotExistsException: The parameter className is not found in the con-
figuration.

7. getNoUpdateOnTables(): Method to retrieve the list of tables whose
fields should not be updated while updating certain attribute(s) of a ob-
ject of given class.

Parameter DataType Default Description

className String Name of the class.

Returns: A list containing the table names which should not be updated
while updating the attributes of object of given class.

Raises:

ParamException: The parameter className is not of string type.
NotExistsException: The parameter className is not found in the con-
figuration.

8. setNoUpdateOnTables(): Method to set the list of table names for a
particular class which should not be touched while updating certain
attribute(s) of the object of supplied class. Make sure that the table-
names supplied are the correct ones for the class involved. No test is
being carried out to check its validity. Wrong table names may produce
unpredictable results including data corruption. Though empty list is
allowed which will reset the dictionary self.noInsTables to empty.

Parameter DataType Default Description

className String The name of the class for which
table list is to be set.
tabList List The list of tables which should

not be touched while updating
attribute(s) of the object of the
given class. It will be added to
the existing table-names in the
configuration. If tabList is an
empty list, all the existing table-
names will be removed from
the configuration.

Returns: Nothing.

Raises:

ParamException: The parameters className is not of string type or the
parameter tabList is not of list type.

NotExistsException: The parameter className is not found in the con-
figuration.

9. getNolnsertOnTables(): Method to retrieve the list of tables into which
the records should not be inserted while creating a new object of given

class.
Parameter DataType Default Description
className String Name of the class.

Returns: A list containing the table names which should not be touched
while inserting the attributes of object of given class.

5 CLASSES 16

10.

11.

12.

Raises:

ParamException: The parameter className is not of string type.
NotExistsException: The parameter className is not found in the con-
figuration.

setNoInsertOnTables(): Method to set the list of table names for a par-
ticular class into which records will not be entered while creating a new
object of supplied class. Make sure that the table-names passed on are
the correct ones for the class involved. No test is being carried out to
check it. Wrong table names may produce unpredictable results includ-
ing data corruption. Though empty list is allowed which will reset the
dictionary self.nolnsTables to empty.

Parameter DataType Default Description

className String The name of the class for which
table list is to be set.
tabList List The list of tables which should

not be touched while insert-
ing new data for a newly cre-
ated object. It will be added to
the existing table-names in the
configuration. If tabList is an
empty list, all the existing table-
names will be removed from
the configuration.

Raises:

ParamException: The parameters className is not of string type or the
parameter tabList is not of list type.

NotExistsException: The parameter className is not found in the con-
figuration.

getDeleteOnTables(): Method to retrieve the list of tables from which
the entries for a particular object of given class is to be deleted.

Parameter DataType Default Description

className String Name of the class.

Returns: A list containing the table names from which record should be
deleted while deleting the object of given class.

Raises:

ParamException: The parameter className is not of string type.
NotExistsException: The parameter className is not found in the con-
figuration.

setDeleteOnTables(): Method to set the list of table names for a par-
ticular class from which the entries should be deleted when removing
that class’ object from the backend database. Please make sure that the
table-names passed on are the correct one for the class involved. No
test is being carried out to check it. Wrong table names may produce
unpredictable results including data corruption. Though empty list is
allowed. In such cases there would be no delete operations possible on
instances of corresponding class.

5 CLASSES 17

13.

14.

15.

Parameter DataType Default Description

className String The name of the class for which
table list is to be set.
tabList List The list of tables involved in

object-deletion.

Returns: Nothing.

Raises:

ParamException: The parameters className is not of string type or the
parameter tabList is not of list type.

NotExistsException: The parameter className is not found in the con-
figuration.

getLastldSQL(): Method to retrieve the SQL statement required to ob-
tain the last (object)id inserted into the database table.

Parameter DataType Default Description

abld String Database identification string
of the database for which the
id-retrieval statement(SQL) is
to be obtained.

Returns: An SQL statement or and empty string if none available.

Raises:

ParamException: The parameter dbld is not of string type.
NotExistsException: The parameter dbld is not found in the configura-
tion.

setLastIdSQL(): Method to set the SQL statement needed to retrieve last
inserted object id from a table.

Parameter DataType Default Description

abld String Database identification string
of the database for which the
id-retrieval statement(SQL) is
to be set.

sql String SQL statement.

Returns: Nothing.

Raises:

ParamException: The parameters dbld or sql are not of string types.
NotExistsException: The parameter dbld is not found in the configura-
tion.

getInitSQLs(): Method to retrieve the list of SQL statements for initial-
izing connections for given database.

Parameter DataType Default Description

dbld String The database identification
string for which the SQLs are to
be retrieved.

Returns: A list containing SQL statements.

5 CLASSES 18

16.

17.

18.

19.

Raises:
ParamException: The parameter dbld is not of list type.
NotExistsException: If parameter dbld is not found in the configuration.

setInitSQLs(): Method to set the SQL statements needed to initialize a
database as soon as a new connection is made.

Parameter DataType Default Description

dabld String Database identification string
of the database for which the
initialization statements(SQLs)
are to be set.

sqlList List List of SQL statements.

Returns: Nothing.

Raises:

ParamException: The parameter dbld or sqlList are not of string type of
list type respectively.

NotExistsException: The parameter dbld is not found in the configura-
tion.

getldInsertValue(): Method to retrieve the value to be used in SQL (for
insert query) for attribute id of given class.

Parameter DataType Default Description
className String Name of the class.

Returns: A string to be used in insert query as value for attribute id of
given class.

Raises:

ParamException: The parameter className is not of string type.
NotExistsException: The parameter className is not found in the con-
figuration.

setldInsertValue():Method to set id-value for insert query for attribute
id of given class.

Parameter DataType Default Description

className String Name of the class for which the
id value is being set.
insertVal String Astring to be used as id-value in

insert query for given class.

Returns: Nothing.

Raises:
ParamException: The parameters insertVal or className are not of string

types.

getRelations(): Method to retrieve the list of relationships amongst table-
columns for given class.

Parameter DataType Default Description
className String Name of the class.

Returns: List of strings specifying table-column relationships for given
class.

5 CLASSES 19

20.

21.

22.

23.

Raises:
ParamException: The parameter className is not of string type.
KeyError: If parameter className is not found in the configuration.

setRelations(): Method to set table-column relationships for a particu-
lar class.
Parameter DataType Default Description
className String Name of the class for which
table-column relationship is
being set.
relations List A list containing all table-
column relationships meant for
aclass.

Returns: Nothing.

Raises:
ParamException: The parameters className or relations are not of string
type or list type respectively.

getNumConnection(): Method to retrieve the maximum number of con-
nection permitted for a database identified by dbld.

Parameter DataType Default Description
abld String Database identification string.

Returns: An integer specifying the maximum number of database con-
nections permitted for given database.

Raises:
ParamException: The parameter dbld is not of string type.
KeyError: The parameter dbld is not found in the configuration.

setNumConnection(): Method to setlimit on maximum number of con-
nections for given database.

Parameter DataType Default Description

dabld String The database identification
string for which the number of
connection is being set.

numCon Integer Integer specifying the number
of connection.

Returns: Nothing.

Raises:
ParamException: The parameters dbld or numCon are not of string type
or integer type respectively.

getDBURL(): Method to retrieve the DBURL for a database identified by
dbId.

Parameter DataType Default Description

abld String The database identification
string.

Returns: DBURL.

5 CLASSES 20

24.

25.

26.

27.

Raises:
ParamException: The parameter dbld is not of string type.
KeyError: If parameter dbld is not found in the configuration.

setDBURL(): Method to associate a database with a DBURL used to ac-
cess it.

Parameter DataType Default Description

dabld String The database identification
string for which the DBURL is
being set.

dbURL String The DBURL.

Returns: Nothing.

Raises:
ParamException: The parameter dbld or dbURL is not of string type.

getDBId(): Method to retrieve the database identification string associ-
ated with a class.
Parameter DataType Default Description
className String The name of the class(class sec-
tion name in config file).

Returns: Database identification string.

Raises:
ParamException: The parameter className is not of string type.
KeyError: If parameter className is not found in the configuration.

setDBId(): Method to associate a class with a database identification
string. The description-entry for that class must exist in the config-
uration already, either from configuration file or through the method
__setitem__().

Parameter DataType Default Description

className String The name of the class which is
to be mapped to given database
identification string.

idString String The database identification
string.

Returns: Nothing.

Raises:

ParamException: The parameter className or idString is not of string
type.

__getitem__(): Method to let the instance of this class mimic the behav-
ior of a dictionary. Its used to retrieve data relevant to object-attributes
to table-column mappings of the database backend.

Parameter DataType Default Description

item String The name of the class(class sec-
tion name in config file).

Returns: A dictionary containing the attribute maps of that class, pro-
vided it exists in the config file. Else raises exception.

5 CLASSES 21

28.

29.

30.

31.

Raises:
ParamException: The parameter item is not of string type.
KeyError: If class item is not specified in the config file.

_setitem__(): Method to (implicitly) add a class name to the configura-
tion and initialize it with a given value.

Parameter DataType Default Description

item String The name of the class to be
added into the configuration.
value Dictionary The initialization value. It must

be a dictionary.

Returns: Nothing.

Raises:
ParamException: The parameter item is not of string type or value is not
of dictionary type.

getAttributeName(): Method to obtain the name of the attribute of cer-
tain object of class className used to store the data of given column
columnName of table tableName.

Parameter DataType Default Description

className String The name of the class whose in-
stance is under consideration.

tableName String The Name of the database table
whose column is given.

columnName String The Name of the column of
given table.

Returns: The name of the attribute related to given table and column
names.

Raises:

ParamException: The parameters className, tableName or column-
Name are not string objects.

ConfigException: Failure to retrieve the attribute-name due to inconsis-
tency in the configuration.

classes(): Method to retrieve the list of classes defined in the configura-
tion file.
Parameters: Nothing.

Returns: A list containing the names of the classes defined in the config
file.

Raises: Nothing.

attributes(): Method to retrieve the list of attributes defined in the con-
figuration file for the given class.

Parameter DataType Default Description

className String The name of the class whose
attribute-names are to be re-
trieved.

Returns: A list containing the attributes of the given class.

5 CLASSES 22

32.

33.

5.4

Raises:
ParamException: The parameter className is not of string type.
KeyError: The parameter className is not found in configuration.

dbURLs(): Method to retrieve all pairs of database identification string
and corresponding DBURL.
Parameters: Nothing.

Returns: A list of pairs of database identification string and respective
DBURL(in tuple form).

Raises: Nothing.
getInfo(): Method to retrieve status of internal data structures of this

instance. Generally this method is used for debugging only. It should
never be used to retrieve data for any other purpose.

Parameters: Nothing.

Returns: String-representation of a dictionary containing name-value
pairs of public and private data of this class. Remember to not to use
this data for any purpose other than to debug this class.

Raises: Nothing.

BackEnd

5.4.1 Module

This class is defined in module backend.

5.4.2 Members

Name Var. Type DataType Description
__initialized Class Integer Flag to test class initialization.
__dbMap Class Object DBMap object holding details

of classes, their attributes and
respective database tables and
columns.

__bdbs Class Dictionary Class-name to BackDB object

mappings.

__sqls Class Dictionary Class-name to object construc-

tion SQL mappings.

__rsOrder Class Dictionary Class-name to order of columns

in result-set mappings.

_delQueries Class Dictionary Class-name to deletion-query-

list mappings.

5.4.3 Methods

1.

__init__(): Constructor to initialize class BackEnd. There are two modes
of possible initializations. To initialize the class members used for data
management tasks, this class is initialized with an instance of DBMap.
This is called stand-alone mode of initialization. It must be done only

5 CLASSES 23

once in an application. No instantiation of the classes inheriting from
this class is permitted unless stand-alone initialization is done. In multi
threaded applications it is advised to do stand-alone initialization in
main thread before starting any child thread. In single threaded appli-
cations this should be done at the beginning of the program.

The second mode of initialization is called super-class initialization. In
this case no parameter is passed on to the constructor. It is supposed to
happen whenever an object is initialized whose class is inherited from
BackEnd. Here the constructor is called without arguments. The child
class must call this method explicitly at the end of its own initialization
work; i.e. it should call BackEnd.__init__(self). Normally SQL related
code is not needed to initialize an RDBMS backed object. All is done
automatically in the super class initialization.

In multi-threaded applications, you should create a re-entrant lock as
an attribute of your object and use it whenever updating the object-
attributes by calling method updateSelf(). Use method setLock() (see
20) for setting a lock on your object.

Parameter DataType Default Description
dbMap Object None An instance of class DBMap.

Returns: Nothing.

Raises:

ParamException: The parameters dbMap is not initialized appropri-
ately or number of database connections specified in configuration is
not a positive non-zero integral number.

InitException: Class not initialized in stand-alone mode.
MulticallException: Constructor is called more than once in stand-alone
mode.

ConfigException: Inconsistent configuration supplied through dbMap.
ConnectionException: Database connection failed.

LimitException: The maximum limits on database connection usage
reached.

ClosedException: The database connection object no longer exists.
CursorException: Failure to create a Cursor object.

ObjectException: Failure to create the object from backend.

Note: This method may raise database related errors too. To catch them

dynamically, use dbModule.Error in except clauses where dbModule may
be any one of the database modules being used by BackEnd. The list of

all python db modules? are returned by method getDBModules() (see

method 15).

2. __checkConfig(): Private method to test the consistency of parameters
supplied through the instance of class DBMap.

Following constraints are expected on any configuration supplied:

(a) A database identification string must be present for each of the
class whose definition is provided in the DBMap object.

4All modules must be compliant to Python Database API version 2.

CLASSES 24

(b) A non-empty DBURL must be mapped for each database identi-
fication string which has a mapping with any class defined in the
configuration.

(c) SQL for retrieval of Object-id must be present for each database
identification string supplied.

(d) The SQL element(IdInsertValue) required to insert object-id must
be defined for each class.

Parameter DataType Default Description
dbMap Object An instance of class DBMap.

Returns: Nothing.
Raises:
ConfigException: Inconsistency in configuration supplied through dbMap.

3. dbConnect(): A factory method to obtain a named DBConnection ob-
ject for the specified database.

Parameter DataType Default Description

dabld String The database identification
string.

conStr String The connection-registration
string.

Returns: An instance of DBConnection class.

Raises:

ParamException: Either the parameters dbld or conStr are not valid string
objects or dbld is not registered with class BackEnd.

LimitException: The maximum limits on database connection-usage
reached.

InitException: Class not initialized in stand-alone mode.
ConnectionException: Database connection failed.

4. registerld(): Method to assign an identification number to an object of
a class derived from BackEnd. Its usually called from the constructor of
the user defined (and derived from BackEnd) class.

Parameter DataType Default Description

id String An integer specifying the object
id. Usually represented by the
primary key of a table in the
database.

Returns: Nothing.

Raises:
ParamException: The parameter id is not of type integer or long.

5. insertSelf(): Method to insert a set of data(attributes) into the database
backend and retrieve the new id of the object. Attributes for all not-null
columns of respective backend tables must be supplied as elements of
parameter "attributes”. Do not pass on the key id in it.

5 CLASSES 25

Parameter DataType Default Description

attributes Dictionary A dictionary containing the the
attributes of the object which
is to be created(inserted into
database).

Returns: Nothing.

Raises:

ParamException: Parameter "attributes” is not a dictionary.
InitException: Class not initialized in stand-alone mode.
NotExistsException: Certain attribute in the parameter attributes is not
found in the configuration for given class.

CursorException: Cursor creation failure.

CommitException: Commit-failure on the database transaction.
ConnectionException: Database connection failed.

LimitException: The maximum limits on database connection-usage.

Note: This method may raise database related errors too. See the doc
string of method BackEnd.__init__() for ways to catch these errors.

6. __buildQuery_insert(): Private method to build INSERT queries required
to insert the attributes of an object into the backend table. The details
of the tables and columns are passed on as a parameter along with the
name of the class whose attributes are being inserted.

Parameter DataType Default Description

className String The name of the class for which
the attributes are being in-
serted.

tabDetails Dictionary A dictionary of dictionaries.

The keys of the first one are
the names of the tables. The
second dictionary contains the
column-names of the table
as keys and corresponding
attribute-names of the objects
as values. The structure is as
follows: {tablel:{colll:attrll,

col21:attr21, e ta-
ble2:{col12:attr12, col22:attr22,
.

Returns: A list of SQL queries built for the table details provided.
Raises: Nothing.

7. __executelnsert(): Private method to execute insert queries. First query
must be the one to insert fields into the table which contains column for
object id. Once insertion is successfully completed, new id is retrieved
and passed on to the attribute dictionary, which in turn can be used for
further insertion into other tables.

5 CLASSES 26

Parameter DataType Default Description

queries List A list containing query-strings
to be executed. The queries are
executed in the order in which
they are stored in this list.

attributes Dictionary A dictionary containing the val-
ues to be used in the query in
attribute(key) and value pairs.

className String The name of the class of this
object(used to identify the
database identification string).

Returns: Nothing.

Raises:

CursorException: Cursor creation failure.

CommitException: Commit-failure on the database transaction.
ConnectionException: Database connection failed.

LimitException: The maximum limits on database connection-usage.
ObjectException: Failure in retrieving id.

Note: This method may raise database related errors too. See the doc
string of method BackEnd.__init__() for ways to catch these errors.

8. updateSelf(): Method to set attributes of an object along with respective
columns in database backend.

Please note that this method does not take care of thread-safety at ob-
ject level. You need to serialize this method-call explicitly by imple-
menting thread-locking if it is a threaded application. User setLock()
(see method 20) for setting locks on classes or objects derived from Back-
End. In multi-threaded applications, it is advised to acquire re-entrant
lock on the instance of your class (which in turn is inherited from class
BackEnd) while calling this method. Once this method returns (suc-
cessfully or unsuccessfully) release that lock.

The choice of class level or instance level locks depends on the number
of objects and frequency of update of its attributes. For N number of in-
memory instances of the class, making a re-entrant lock as an instance-
attribute will consume N times the memory consumed by a single lock
object. But it will make each object independent of the other for update
purpose as multiple object-attributes can be updated simultaneously.
On the other hand iflock is a class-attribute, then for all the instances of
the class only one lock object will be used. But this will serialize update
calls at the class level. Thus attributes of two instances of the class can
not be updated simultaneously even in multi-threaded applications.

Parameter DataType Default Description

attributes Dictionary None A dictionary containing key-
value pairs of attribute-names
and its value. You should not set
the value for attributes[”id”]. If
you do, the value supplied is
overwritten by object’s own id.

5 CLASSES 27

Returns: Nothing.

Raises:

ParamException: Parameters attributes is not of dictionary type.
InitException: Class not initialized in stand-alone mode.
ObjectException: Attribute id is not found in the object.
ConnectionException: Database connection failed.

LimitException: The maximum limits on database connection-usage
reached.

NotExistsException: Either an attribute being updated is not defined in
the configuration of the class or class itself is not defined in the config-
uration.

CursorException: Failure to create a Cursor object.

CommitException: Commit-failure on the database transaction.
AttributeError: An attribute as specified in the configuration is missing
in the object. Usually caused by faulty constructor.

Note: This method may raise database related errors too. See the doc
string of method BackEnd.__init__() for ways to catch these errors.

9. __buildQuery_update(): Private method to build UPDATE queries re-
quired to update the attributes of an object. The details of the tables
and columns are passed on as a parameter along with the name of the
class whose attributes are being updated.

Parameter DataType Default Description

className String The name of the class whose at-
tributes are being updated.
tabDetails Dictionary A dictionary of dictionaries.

The keys of the first one are
the names of the tables. The
second dictionary contains the
column-names of the table
as keys and corresponding
attribute-names of the objects
as values. The structure is as
follows: {tablel:{colll:attrll,

col21:attr21, b ta-
ble2:{col12:attr12, col22:attr22,
ks o}

Returns: A list of SQL queries built for the table details provided.

Raises:
ConfigException: No where clause found in update query due to logical
error in configuration.

10. __executeUpdate(): Private method to execute multiple update queries.

5 CLASSES 28

11.

12.

Parameter DataType Default Description

queries List A list containing query-strings
to be executed. The queries are
executed in the order in which
they are stored in this list.

attributes Dictionary A dictionary containing the val-
ues to be used in the query in
attribute(key) and value pairs.

className String The name of the class of this
object(used to identify the
database identification string).

Returns: Nothing.

Raises:

CursorException: Cursor creation failure.

CommitException: Commit-failure on the database transaction.
ConnectionException: Database connection failed.

LimitException: The maximum limits on database connection-usage.

Note: This method may raise database related errors too. See the doc
string of method BackEnd.__init__() for ways to catch these errors.

deleteSelf(): Method to delete the object (self) from the database. The
object in question(i.e. self) must be compliant to the backend frame-
work. Please note that the object (in-memory) is not destroyed when
this method is called. It only removes the contents related to the con-
cerned object from backend database. It is the responsibility of the de-
veloper to not to use in-memory object anymore e.g. by setting a de-
stroyed flag just before calling this method. Also follow proper thread-
safe programming procedure in a multi threaded environment.

Parameters: Nothing.
Returns: Nothing.

Raises:

ObjectException: Attribute id is not found in the object or it is not an
integer or long.

InitException: Class not initialized in stand-alone mode.
CursorException: Cursor creation failure.

CommitException: Commit-failure on the database transaction.
ConnectionException: Database connection failed.

LimitException: The maximum limits on database connection-usage.

Note: This method may raise database related errors too. See the doc
string of method BackEnd.__init__() for ways to catch these errors.

__buildQuery_delete(): Private method to build DELETE queries required
to remove an existing object of given class from the database backend.

Parameter DataType Default Description
className String The name of the class whose in-
stance is to be deleted.

5 CLASSES 29

13.
14.

15.

16.

Returns: A list of SQL queries built for the table details provided.
Raises: Nothing.

__executeDelete(): It refers to the method __executeUpdate() (see 10).

__getTablesColumns(): Private method to fetch names of tables and their
columns (with respective attribute-names mapped) involved to build
queries for a given set of attributes.

Parameter DataType Default Description

className String Name of the class.
attributes Dictionary Attribute-set stored as a dictio-
nary.

Returns: A dictionary where key is the name of the table and value is an-
other dictionary where key is the column-name(of that table) and value
is the corresponding attribute-name.

Raises:
NotExistsException: Certain attribute in the parameter attributes is not
found in the configuration for given class.

getDBModules(): Method to retrieve all (or any one of) python database
modules being used by backend framework.

Parameter DataType Default Description
abld String None The database identification
string.

Returns: If no parameter is supplied, a list of all python database mod-
ules under use are returned. If parameter "dbld” is supplied, it returns
the module being used for it.

Raises:

ParamException: The parameter "dbld” is not a string object.
InitException: Class not initialized in stand-alone mode.
NotExistsException: Supplied database identification string is not regis-
tered with backend.

classes(): Method to retrieve the list of classes registered to backend.
All classes defined in the configuration must be defined at the time of
calling of this method.

Parameter DataType Default Description

ns Dictionary globals() A dictionary with contents of
global namespace in key-value
form. If this parameter is ‘None’
or empty string, a list of avail-
able class names is returned.
Else a list of class objects re-
trieved from this namespace is
returned.

Returns: Depending on the value of parameter 'ns) a list of backend
compliant class objects currently registered with class BackEnd or a list
of class names present in the configuration.

5 CLASSES 30

Raises:

ParamException: Parameter 'ns’ is not a dictionary object.
InitException: Class not initialized in stand-alone mode.
NotExistsException: One of the class specified in the configuration is not
defined in global namespace or the one supplied in 'ns’.

17. searchld(): Method to search and retrieve the ids of instances of class
classObj matching the parameters supplied in attributes.

Parameter DataType Default Description

classObj Object A class object the ids of whose
instances are to be retrieved.
attributes Dictionary A dictionary containing the

attribute-value pairs on the
basis of which search is carried
out.

Returns: A list of ids if any matches are found, else empty list.

Raises:

ParamException: Parameter classObj is not a class object or attributes
is not a dictionary.

InitException: Class not initialized in stand-alone mode.
NotExistsException: Supplied class object is not registered with Back-
End.

18. __buildQuery_select(): Private method to build SELECT queries required
to search a table for ids of an object based on a set of attributes. The de-
tails of the tables and columns are passed on as a parameter along with
the name of the class whose ids are being searched.

Parameter DataType Default Description

className String The name of the class whose ids
are being selected.
tabDetails Dictionary A dictionary of dictionaries.

The keys of the first one are
the names of the tables. The
second dictionary contains the
column-names of the table
as keys and corresponding
attribute-names of the objects
as values. The structure is as
follows: {tablel:{colll:attrll,
col21:attr21, b ta-
ble2:{col12:attr12, col22:attr22,

)

Returns: A string containing select query(SQL) built for the table details
provided.

Raises: Nothing.

19. __executeSelect(): Private method to execute a select query on the database
associated with given class.

5 CLASSES 31

20.

21.

Parameter DataType Default Description

query String A string containing SQL query
to be executed.
attributes Dictionary A dictionary containing the

values to be used in the query
in attribute-name(key) and
attribute-value(value) pairs.
className String The name of the class of this
object(used to identify the
database identification string).

Returns: A list of tuples. Each tuple contains the number of records
being selected through the query. If nothing is retrieved, An empty list
is returned.

Raises:

CursorException: Cursor creation failure.

CommitException: Commit-failure on the database transaction.
ConnectionException: Database connection failed.

LimitException: The maximum limits on database connection-usage.

Note: This method may raise database related errors too. See the doc
string of method BackEnd.__init__() for ways to catch these errors.

setLock(): Method to set a lock on the objects derived from BackEnd. It
should be called in the constructor of derived class if an instance based
lock is to be created.

Parameter DataType Default Description

lockName String Name of the attribute holding
the lock object.
lockObj Object Alock object.

Returns: Nothing.

Raises:

ParamException: Parameter lockName is not a string object or attribute
lockObj is not an instance of a class.

InitException: Class BackEndnot initialized in stand-alone mode.

getDBConnection(): Method to obtain an instance of DBConnection
class for the database involved with this object. This method is sup-
posed to be called through the objects which are children or grand chil-
dren of BackEnd. It must not be called through an instance of class
BackEnd itself.

Parameter DataType Default Description

conStr String A string used to identify the

connection object.

Returns: An instance of DBConnection if operation succeeds.

Raises:
ParamException: Parameter conStr is either empty or it is not a string

5If you need to obtain database connection directly from an instance of BackEnd, use method
dbConnect() (see function 3).

6 CONFIGURATION FILE FORMAT 32

object.

InitException: Class BackEndnot initialized in stand-alone mode.
ConnectionException: Database connection failed.

LimitException: Maximum limits on database connection-usage reached.

22. getInfo(): Method to retrieve status of internal data structures of the
instance/class. Generally this method is used for debugging only. It
should never be used to retrieve data for any other purpose as there is
no thread-locks in place during data-retrieval.

Parameters: Nothing.

Returns: String-representation of a dictionary containing name-value
pairs of public and private data of this class. Remember to not to use
this data for any purpose other than to debug this class in a single threaded
environment.

Raises: Nothing.

6 Configuration File Format

The configuration file specifying details of classes, attributes and respective
database authentication info involved in backend framework is defined in a
text file. It has a format similar to the .ini files used in Windowssystems. The
file contains multiple sections with section-name enclosed in square braces({]).
The option and its value for each section is separated by an equality(=) char-
acter. All comments begin with either semi-colon(;) or pound (#) sign. The
contents of a sample configuration file with details in comments are given
below.

; Sample configuration file(dbmap.ini) which can be supplied to the
; constructor of class DBMap. Most of the following discussion

; involves using class DBMap along with class BackEnd. DBMap holds
; just the details required for correct functioning of BackEnd.

; You can consider it just as an interpreter and storage manager

; for configuration data.

[Object-Database Map]

; Class names are mapped to corresponding databases. Here "school"
; and "office" are database identification strings.

Teacher = school

Student = school

Supplier = office

Item = office

[Database-DBURL Map]

; Each database identification string requires corresponding DBURL

; for opening a connection to that database. Here school points to

; a postgres database named schooldb while office points to a mysql
; one named officedb.

school = rdb:pgdb//userl@passwdl:pgserver.example.com:5432/schooldb
office = rdb:MySQLdb//user2@passwd2:localhost:3306/0fficedb

6 CONFIGURATION FILE FORMAT 33

[Database-NumConnection Map]

; Maximum number of database connections allowed to be used by the
; application. It should be fixed for each database.

school = 12

office = 8

[Database-InitSQLs Map]

; SQL to be executed for the first time the connection is made.

; Multiple SQL statements can be specified with colon(:) as the

; separator. For switching off auto-commit in mysql, following

; statement is used.

office = SET AUTOCOMMIT=0

; If a particular database does not require any initialization,

; do not mention it in this section as we are not mentioning
"school" here.

[Database-LastIdSQL Map]

; SQL to be executed for retrieving the last id inserted into the

; table. The macro {TABLE} expands to the correct table name used

; for storing the id of the object of the class for which query is

; being built. The query must be such that only one record of only

; one column is fetched, which is the id itself. Following entries

; show the queries for postgres and mysql respectively. The entry

; for postgres (i.e. "school") works for any SQL-82 compliant RDBMS.
school = SELECT id FROM {TABLE} ORDER BY id DESC LIMIT 1

office = SELECT last_insert_id()

[Class personnel.Teacher]

; Attributes of Teacher object. This class is defined in module
; file personnel.py.

id = teachers.id

name = teachers.name

subject = tsmaps.subjectId

maxQualification = tgmaps.qld

; Since three tables are involved, there must be two relationship-

; definitions separated by commas. They show the relationships

; amongst the columns of these three tables.
{Relations}=tsmaps.teacherId=teachers.id,tqmaps.teacherId=teachers.id

; A sequence in postgres named "teachers_seq" is used to get unique
; ids for each records in table teachers. Following shows the value
; to be used in insertion queries for attribute id.

{IdInsertValue} = nextval(’teachers_seq’)

; Delete operation on an instance of class Teacher should delete

; records from tables "teachers", "tsmaps" and "tgmaps". So mention
; those table-names here. If some tables are to be ignored, do not
; mention them. Absence of this entry means you do not want to

6 CONFIGURATION FILE FORMAT 34

; delete the relevant records of the object from the database.

; The order of listing may be important for successful deletion
; of records. The deletion on the table storing object-id will

; always be carried out last irrespective of its position in the
; listing. Also any space character present in the table listing
; will be removed silently.

{DeleteOnTables} = teachers,tsmaps, tqmaps

[Class personnel.Student]

; Attributes of Student object. Attributes of it are stored in
; single table. Hence no relationship is required. Its also defined
; in personnel.py.

id = students.id

age = students.age

minorFlag = students.minor

lastGrade = students.lastgrade

credit = students.netcredit

primarysubject = prisubjects.subject_id

remarks = students.remarks

{IdInsertValue} = nextval(’students_seq’)

{DeleteOnTables} = students

; Datatype of attribute '"credit" is float and it is defined as such

; in the backend database table. Floats and doubles are un-comparable

; data types. They can not be used in the "where" clause of a select

; or update query. You must mention such table-column names
(separated by commas) here.

{UncompTabCols} students.netcredit

; If you do not want backend to insert data directly into a table

; even if its column holds certain attribute of the object, you

; can do it with option {NoInsertOnTables}. List those tables

; here separated by commas. Its an optional and rarely used option.
Same is true for the next option too.

{NoInsertOnTables} foo, bar, baz

; Similar mechanism is available for updating the backend. If you do
; not wish to update certain tables while updating the attributes of
; the object, list them here separated by commas.

{NoUpdateOnTables} = foo,bar

[Class business.Supplier]

; Attributes of Supplier object. This class is defined in module
; business.py.

id = suppliers.id

name = suppliers.name

address = suppliers.address

remarks = suppliers.remarks

{DeleteOnTables} = suppliers

7 USING BACKEND FRAMEWORK 35

cl ass BackEnd

Configuration
t hr ough DBMap

-/

Yo%
gt
\g

)

Class d 1 using Class O 2 using Class O 3 using
dat abase DB1 dat abase DB2 dat abase DB3

Figure 2: Schematic for using backend framework

; Since database is mysql, passing empty string in an
; auto-increment field works correctly.
{IdInsertValue} = *’

[Class __main__.Item]

; Attributes of Item object. This class is defined in a file which
; is passed to the python interpreter directly, hence the module

; name "__main__".

id = items.id

name = items.name
batchNo = items.batchno
price = items.price
{IdInsertValue} = ’’
{DeleteOnTables} = items

7 Using backend Framework

The major advantage of backend framework over similar system is its ease of
use. The user has to create a single configuration file with his/her ideas of the
classes, their attributes and corresponding databases involved. Every class
compliant to this framework must inherit from class BackEnd. Figure 2 shows
the general arrangement of user-defined classes in backend framework.

7.1 Development Constraints

Following constraints are involved in creating backend compliant classes.

7 USING BACKEND FRAMEWORK 36

1. Everyuser defined backend compliant class must be inherited from class
BackEnd.

2. Every class must possess an attribute id containing an integer. It stores
the unique object-id of instances of that class. Object-id is mapped to a
column(primary key) in certain table in the backend database.

3. One class may have attributes from multiple tables. In such cases op-
tion { Relations} must be set properly. Suppose you have column name
of table teachers and column subjectld of table tsmaps storing any two
attributes of the class Teacher. Also primary key of table teachers is col-
umn id and it is mapped(foreign key) to the column teacherld of table
tsmaps. Hence for the records of a particular object of this class you
know that teachers.id = tsmaps.teacherld. This must be specified in op-
tion { Relations} of class Teacher in the configuration file. In this partic-
ular case it should be mentioned as:

{Relations} = teachers.id=tsmaps.teacherId

Columns mentioned in option {Relations} may or may not be part of
the attributes of the class under consideration. For further details see
section 6 which deals with configuration options.

4. Constructor (__init__()) of the class should be able to handle at least two
different sets of arguments. The first case involves creating object for
the first time where newly supplied data is inserted into the backend
database. In this case the attribute id (which is created after inserting
object’s attributes into the database) is not known in advance. Hence
a dictionary (say, dict) with other available and compulsory attributes
should be built with the key being the attribute-name and the the value
being the attribute-value. Otherwise the constructor itself can be de-
signed to take up this dictionary as its sole argument. Then call method
self.insertSelf(dict).

In the second case the object is created from the existing data in the
backend database. Here attribute id is known in advance. So the con-
structor gets only one parameter, i.e. object-id. Whenever only id is sup-
plied, first method to be called is self-registerld(id). Then super class’
constructor BackEnd.__init__(self) should be called. This will populate
attributes of the object from values stored in the database.

5. Method __setattr__() should be overridden in the class being constructed.
Suppose all attributes of the object are stored in the backend RDBMS
and all columns and corresponding attributes are mentioned in config-
uration (see section 6. In this case just a single line definition is enough:

def __setattr__(self, item, wval):
self .updateSelf ({item:vall})

If all attributes are not just mappings of their database records, then
selective updates are possible too. For all RDBMS backed attributes call
method self.updateSelf({item:val}) where item is the attribute-name and
val is its value to be updated in the database.

7 USING BACKEND FRAMEWORK 37

7.2 Sample Program

We will build a small program to show the usage of class BackEnd in an ob-
ject oriented way. It is a single class Client whose attributes are mapped to
the columns of table clients in database dirdb. Every instance of Client rep-
resents one record in the table clients.

7.2.1 Database

We will use MySQL-Max engine for storing this data in the backend. The table
type is innodb. Following sql script is used to create it.

; Mysql script clients.sql.

create database dirdb;

use dirdb;

create table clients (
id integer(11) auto_increment,
name varchar(80) not null,
addr varchar(120) not null,
location varchar(64) default null,
city varchar(32) default null,
state varchar(32) default null,
pincode varchar(8) default null,
phone varchar(64) default null,
fax varchar(64) default null,
email varchar(64) default null,
contact varchar(80),
primary key (id)

) TYPE=InnoDB;

7.2.2 Configuration File

Following is the contents of our configuration file sample.ini used to initialize
DBMap.

[Object-Database Map]
; Class names are mapped to corresponding databases.
clients.Client = directory

[Database-DBURL Map]
directory = rdb:MySQLdb//user@pass:mysql.example.com:3306/dirdb

[Database-NumConnection Map]
; Maximum number of database connections allowed.
directory = 3

[Database-InitSQLs Map]
; SQL to be executed for the first time the connection is made.
; Multiple SQL statements can be specified with colon(:) as the

7 USING BACKEND FRAMEWORK

; separator.
directory = SET AUTOCOMMIT=0

[Database-LastIdSQL Map]

; SQL to be executed for retrieving the last id inserted into
; the table.

directory = SELECT last_insert_id()

[Class clients.Client]

; Attributes of Client object defined in clients.py module.
id = clients.id

name = clients.name

address = clients.addr
location = clients.location
city = clients.city

state = clients.state
pincode = clients.pincode
phone = clients.phone

fax = clients.fax

email = clients.email
person = clients.contact
{IdInsertValue} = ’’
{DeleteOnTables} = clients

7.2.3 Code for class Client

38

Class Client is defined in module clients.py. The contents of it are given be-

low.

import types, threading
import backend
from prangya.excgeneric import *

class Client(backend.BackEnd) :

Class Client stores and processes information of client companies.

Extends: BackEnd.

def __init__(self, id=None, attrs=None):

Constructor to initialize a Client object from backend database
or create a new one and insert relevant data into the database.

Parameters:

id: If pertinent data is available in the database and

integer or long specifying the object-id.

attrs: A dictionary containing attribute name as key and
attribute-value as its value. It is supplied only if

a new object is to be created.

7 USING BACKEND FRAMEWORK 39

def

Raises:
ParamException: Invalid parameters supplied.
InitException, NotExistsException, CursorException,
CommitException, ConnectionException and
LimitException: Raised from "BackEnd". See its
documentation for details.
nnn
if id:
if not (type(id) is types.IntType or type(id) \
is types.LongType) :
raise ParamException(’clients.Client.__init__(): \
Invalid data type for id.’)
self .registerId(id)
backend.BackEnd.__init__(self)
elif attrs:
if type(attrs) is not types.DictType:
raise ParamException(’clients.Client.__init__(): \
Invalid data type for attrs.’)
self.insertSelf (attrs)
else:
raise ParamException(’clients.Client.__init__(): \
Neither "id" nor "attrs" supplied. One of \
these parameters must be present in the \
constructor.’)
self.setLock(’lock’, threading.RLock()) # Instance lock.

__setattr__(self, attribute, value):
noan

Auto updation of database is done by overloading method
__setattr__().

Parameters:
attribute: A string containing attribute-name of the
object.
value: Value of the attribute "attribute".
Raises:

ParamException: Invalid parameter "attribute".
InitException, ObjectException, ConnectionException,
LimitException, NotExistsException, CursorException,
CommitException, AttributeError: Raised from
"BackEnd". See its documentation for details.
nun
if not attribute:
raise ParamException(’clients.Client.__setattr__(): \
Empty value supplied for parameter "attribute".’)
self.lock.acquire()
try:
self .updateSelf ({attribute:valuel})
except:
self.lock.release()

7 USING BACKEND FRAMEWORK 40

raise
self.lock.release()

7.2.4 Running the sample code

The sample code can be run either in interactive mode or through a script.
We chose the path of script. The contents of the script fest_client.py is given
below.

from backend import *
import prangya.objstore
import clients

Create an instance of DBMap containing details of
object’s attributes.
dbm = DBMap(’sample.ini’)

This object is used to initialize backend framework.
be = BackEnd (dbm)

Initialize ObjectStore framework. You don’t need to
preserve object "ost".
ost = prangya.objstore.ObjectStore(be)

Now create a client object through ObjectStore’s
interface create. Note that the first parameter
of Client’s constructor is None as we still don’t
have the id of object.

cll = ost.create(clients.Client, (None,
{’name’:’Tata Iron & Steel Co. Ltd.’,
’address’:’Station Road’,

’location’:’Bistupur’,

’city’:’Jamshedpur’,

’state’:’Jharkhand, INDIA’,

’phone’:’0751 234 1234°}))

Check your database tables using SQL console. You will
notice table clients containing one record with above data.

Print the newly acquired id.
print cli.id

Print attribute fax. Which is None, and hence empty.
print cll.fax

Now set the attribute fax.
cli.fax = 0751 234 1245’

Check again the record in table clients through SQL console.
You will see the record for fax in it.

7 USING BACKEND FRAMEWORK 41

Now let us retrieve a new Client object with same id.
myId = cll.id
cl2 = ost.retrieve(clients.Client, (myId, None))

Print the id of it. It will match with that of cli.
print cl2.id

Print attribute city. You will get ’Jamshedpur’.
print cl2.city

Check object-ids of cll and cl2. Both will be SAME!

print ’id of cll is’ + str(cll)

print ’id of cl2 is’ + str(cl2)

It means you are dealing with same object. It is the case
even if you create cll and cl2 in two different threads

in an application.

Now you don’t have to carry around "ost". Just create an
instance of ObjectStore when you need it. Notice empty

constructor.

ostNew = prangya.objstore.ObjectStore()

Retrieve third object from database with the same id(myId).
cl3 = ostNew.retrieve(clients.Client, (myId, None))

Print object-id of it. It will be the same as that of cli
and cl2. So you are using the same (in-memory) object.
print ’id of cl3 is’ + str(cl3)

Now search and retrieve objects having ’Bistupur’ as its
attribute location.
result = ostNew.search(clients.Client, {’location’:’Bistupur’})

You will get a list with one element. Assign this element
to cl4.
cl4 = result[0]

Print its attribute id and object-id.

print cl4.id

print ’id of cl4 is’ + str(cl4)

Again it is the same object which you worked with earlier,
i.e. cll, cl2 and cl3.

To remove this record from the database call destroy().
ostNew.destroy(cl3)

Check the table clients through SQL console. The table is empty.
Now its your responsibility to not to use cll, cl2, cl3 or cléd
further as such object is non-existent in backend database.

8 CONCLUSION 42

8 Conclusion

BackEnd framework is supposed to be useful for a wide range of python ap-
plications. It can be used as an enterprise level component to build medium
to large scale python based applications. The present version is going through
initial beta testing. Active support from the community can make it an invalu-
able tool in application developers’ tool-chest.

kekskkkkk

